The complexity of complex weighted Boolean #CSP

نویسندگان

  • Jin-Yi Cai
  • Pinyan Lu
  • Mingji Xia
چکیده

We prove a complexity dichotomy theorem for the most general form of Boolean #CSP where every constraint function takes values in the complex number field C. This generalizes a theorem by Dyer, Goldberg and Jerrum [11] where each constraint function takes non-negative values. We first give a non-trivial tractable class of Boolean #CSP which was inspired by holographic reductions. The tractability crucially depends on algebraic cancelations which are absent for non-negative numbers. We then completely characterize all the tractable Boolean #CSP with complex valued constraints and show that we have found all the tractable ones, and every remaining problem is #P-hard. We also improve our result by proving the same dichotomy theorem holds for Boolean #CSP with max degree 3 (every variable appears at most three times). The concept of Congruity and Semi-congruity provides a key insight and plays a decisive role in both the tractability and hardness proofs. We also introduce local holographic reductions as a technique in hardness proofs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Weighted Boolean #CSP Modulo k

We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for any positive integer k > 1. This generalizes a theorem by Faben for the unweighted setting. In the weighted setting, there are new interesting tractable problems. We first prove a dichotomy theorem for the finite field case where k is a prime. It turns out that the dichotomy theorem for the finite field is ve...

متن کامل

A Trichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs

We determine the computational complexity of approximately counting the total weight of variable assignments for every complex-weighted Boolean constraint satisfaction problem (or CSP) with any number of additional unary (i.e., arity 1) constraints, particularly, when degrees of input instances are bounded from above by a fixed constant. All degree-1 counting CSPs are obviously solvable in poly...

متن کامل

The complexity of approximating conservative counting CSPs

We study the complexity of approximation for a weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, a classification is known for the Boolean domain. We give a classification for problems with general finite domain. We define weak log-modularity and weak log-supermodularity, and show that #CSP(F) is in FP if F is weakly log-m...

متن کامل

The Complexity of Planar Boolean #CSP with Complex Weights

We prove a complexity dichotomy theorem for symmetric complex-weighted Boolean #CSP when the constraint graph of the input must be planar. The problems that are #P-hard over general graphs but tractable over planar graphs are precisely those with a holographic reduction to matchgates. This generalizes a theorem of Cai, Lu, and Xia for the case of real weights. We also obtain a dichotomy theorem...

متن کامل

The Approximability of Three-valued MAX CSP

In the maximum constraint satisfaction problem (Max CSP), one is given a finite collection of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign values from a given domain to the variables so as to maximize the number (or the total weight, for the weighted case) of satisfied constraints. This problem is NP-hard in general, and, therefore, it is natural t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2014